Local Planning to Reduce GHG Emissions

Antero Rivasplata, AICP

Expert Consultant, ICF

Sonoma State University 36th Annual Planning Commissioners Conference

Greenhouse Gases and Climate Change

- Climate change is the existential problem of this generation
 - Since the industrial revolution, GHG emissions have risen exponentially
- Climate change happens naturally
 - The Pleistocene Era ended as climate warmed
 - Europe's 15th Century "little Ice Age" is a more recent, short-term example
- The difference NOW is that we've accelerated the cycle
 - Our civilization is based on burning things
 - Burning releases GHGs
 - Increased concentrations of GHGs in the atmosphere trap solar radiation
- The "greenhouse effect" raises global temperatures
 - Weather changes wetter/drier, colder/warmer
 - Things melt sea levels rise, deep ocean currents change

Sources of GHG Emissions in California

What Can We Do?

- California has taken the initiative to reduce statewide emissions substantially over the next 30 years
 - Probably can't stop climate change, but may limit its effects
 - Global Target: 80% reduction below 1990 levels by 2050
- State initiatives (a few examples):
 - Energy-efficient building codes
 - Fuel-efficient automobile standards
 - Renewable Portfolio for energy producers
 - AB 32/SB 32 "Scoping Plan" and the 2030 reduction target (40% of 1990 emissions)

Scoping Plan Comprehensive

• Although it focuses on state programs, the 2017 Scoping Plan takes a comprehensive view of GHG reduction

	Double building efficiency	6	Cleaner freight and goods movement
	50% renewable power	-	Slash potent "super-pollutants" from dairies, landfills and refrigerants
	More clean, renewable fuels		
2	Cleaner zero or near-zero emission	щ	Cap emissions from transportation, industry, natural gas, and electricity
	cars, trucks, and buses	Ċ.	Invest in communities to reduce emissions
49	Walkable/Bikeable communities	THE	
	with transit		

Local Role

- California Environmental Quality Act (CEQA):
 - Lead agency must examine and mitigate project's GHG emissions, if significant
 - Agencies can adopt a "plan for the reduction of GHG emissions" to streamline their CEQA process
- Climate Action Plans (CAPs):
 - Some agencies have adopted CAPs to reduce agency emissions
 - Some CAPs are also a "plan for the reduction of GHG emissions"
- Land Use Planning:
 - Some agencies have adopted transportation and land use approaches to encourage alternative transportation modes

CEQA

- GHG emissions can be a significant impact under CEQA
 - Would the project GHG emissions have a significant impact?
 - Would the project conflict with a plan or policy adopted for the purpose of reducing GHG emissions?
- CEQA analysis must address the project's GHG emissions
 - GHG emissions are a cumulative effect on the environment
 - Even a small incremental change can be significant
- Typical analysis quantifies project emissions and considers them in the context of statewide reduction targets
 - SB 32: 40% below 1990 levels by 2030
- A Mitigated Negative Declaration or EIR must include enforceable mitigation measures to reduce GHGs
 - On-site or off-site mitigation
 - Offsets are one form of mitigation

CEQA: GHG Emissions Reduction Plan

- An optional jurisdiction-wide approach to CEQA analysis
- A "plan for the reduction of GHG emissions" can provide a threshold and standard mitigations for CEQA analyses
 - Quantify GHG emissions
 - Establish a level below which contributions to GHG emissions from the plan would not be cumulatively considerable
 - Identify and analyze GHG emissions resulting from specific actions
 - Specify measures and performance standards that, if implemented on a project-by-project basis, would collectively achieve specific emission levels
 - Establish a monitoring mechanism
 - Adopt through a public process, with environmental review
- Projects consistent with the plan are assumed to have less-thansignificant GHG emissions

CEQA: Common Mitigation Measures

- Energy conservation in building design (exceeding CBC)
- Water conservation in building design
- Water conserving landscape
- Rooftop solar
- Electric car charging station
- Bicycle and pedestrian facilities and connections
- Electric vehicles (e.g., port facilities, distribution centers)

Climate Action Plans

- Local plan for reducing GHG emissions within the jurisdiction
 - Some focus on agency emissions
 - Some focus on private project emissions
 - Some do both
- Identifies specific actions that will be required for agency and private project activities
 - Energy efficient construction
 - Water efficiency
 - Electrification of vehicle fleet
 - Installation of solar panels
 - Bike parking at commercial establishments
 - Electricity-only new construction (no natural gas)
 - Etc.

Typical CAPs

- Quantify GHG emissions within the jurisdiction to some target date
 - 2030 is the norm now
- Set jurisdiction's GHG reduction targets by sector
 - Residential, commercial, public, etc.
- Identify jurisdiction's reduction policies, with expected reductions quantified
- Identify measures for individual projects
- Ideally, they also function as a CEQA "plan for the reduction of GHG emissions"

Land Use Planning

- Reducing automobile use (VMTs)
 - Land use patterns that accommodate non-automobile trips bike, walk, transit
 - Mixed use downtowns that accommodate housing and reduce trip distances
- Policies and design standards for development projects that reduce energy and water use. Examples:
 - Lot orientation for solar
 - Right-sized streets
 - Tree planting
 - Native/water-efficient landscaping
 - Efficient connections and mixed uses
- Road standards that make bicycling and walking safe and attractive
- Subdivision standards/review to implement policies

"Old School" Land Use Pattern to Avoid

5.-121.3160377,676m/data=!3m1!1e3!4m5!3r 🔎 👻 🛗 び 🛛 Ġ Roseville - Google Maps Autumn Oaks Apartments McAnally Dr Dollar Tree Domino's Pizza The UPS Store Foothill Junction **Dunkin' Donuts Junction Blvd** Wanish Park Google

Transportation: One Culprit in GHG Emissions

- 37% of CA's total GHG emissions come from the transportation sector
- Vehicle Miles Travelled (VMT) is the key indicator of emissions
- California's VMT increased 8% between 2006 2017 and is projected to increase in the future (Calif Transportation Commission)
- Reducing the GHG share from the transportation sector requires reducing statewide VMT

Focusing on Vehicle GHG Emissions

- Less driving = less fuel use and fewer GHG emissions
 - This takes commitment to alternative transportation modes
 - And a change in expectations for trip convenience
- Countervailing forces:
 - Urban sprawl increases VMT (longer commute trips offset fuel efficiency)
 - Electric power plants emit GHGs, so increased use of ZEVs doesn't eliminate GHG emissions from transportation
 - Shared vehicles (Transportation Network Cos: Uber, Lyft, etc) are increasing VMT
 - 47% of VMT increase (2010 2016) in San Francisco is from TNCs
 - Autonomous vehicles may increase total vehicles on the roads
 - One estimate: 35% increase for personal AVs; 90% increase for single-passenger AV taxis
 - Autonomous Vehicles: Hype and Potential <u>https://urbanland.uli.org/industry-</u> sectors/infrastructure-transit/autonomous-vehicles-hype-potential/

Local VMT Reduction Efforts

- <u>CEQA</u>: VMT is now the metric for transportation impacts
 - High VMT must be mitigated when feasible
- <u>CAP</u> components:
 - Enforceable requirements to reduce GHGs from new projects
- <u>Planning</u>: Improved connectivity in land use patterns
 - Making it easier to walk or bike to close destinations
 - More and safer bike lanes; protected pedestrian crossings
 - Transit accommodations

VMT Mitigation Under CEQA

- Mitigation measures must be feasible and enforceable
 - Conditions of approval
 - Plan policies
- Common mitigation measures
 - Incorporate bike and pedestrian friendly design
 - Provide convenient bike parking
 - Limit parking supply
 - Subsidize resident car-sharing or bike-sharing programs
 - Improve access to transit

The Wrong Way to do the Right Thing

Pretty, but hard to use. Where does the lock go?

Escaped scooters blocking the sidewalk.

Additional VMT Reduction Efforts

- Increased public transportation funding
 - More buses, bus rapid transit, and transit apps make it easier to ride
 - Single-fare across public system providers improves convenience
- Commuter rail (SMART, CalTrain, etc.)
 - Alternatives for the long-distance commuter
 - Challenges remain in "last mile" connections
- Bike sharing networks
 - Increasing bike/scooter use for short distance trips

Wrap Up